356 Chemistry Letters 2001

Formation of Ethylene-Bridged Bimetallic Zirconocene Complexes by Coupling of Cp_2ZrEt_2 and Cp_2ZrX_2 (X = Cl or Br)

Yasuyuki Ura, Masayoshi Jin, Kiyohiko Nakajima,[†] and Tamotsu Takahashi*

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University,
and CREST Science and Technology (JST), Sapporo 060-0811

[†]Aichi University of Education, Igaya, Kariya, Aichi 448-8542

(Received January 22, 2001; CL-010061)

 Cp_2ZrEt_2 reacted with one equiv of Cp_2ZrX_2 (X=Cl or Br) in THF to afford ethylene-bridged bimetallic zirconocene complexes, $(Cp_2ZrX)_2(CH_2CH_2)$ (X=Cl (2a), or Br (2b)), in high yields. The structure of 2b was determined by X-ray analysis. Reactions of 2a-b with various anions Y^- gave a series of ethylene-bridged bimetallic zirconocene complexes, $(Cp_2ZrY)_2-(CH_2CH_2)$ (Y=Ph, Me, Bu, CH_2SiMe_3) in good to high yields.

Bimetallic zirconocene complexes containing a side-on bridged ethylene ligand are attractive, since they have ethylene and alkyl groups on zirconocene simultaneously, and also they have unusual penta-coordinate carbons.¹⁻⁴ Kaminsky et al. have reported that when Cp₂ZrCl₂ was treated with Et₃Al, (Cp₂ZrCl-AlEt₃)₂(CH₂CH₂) was formed.¹ Recently, we have reported that (Cp₂ZrMe)₂(CH₂CH₂) (1) was formed by addition of a Grignard reagent, EtMgBr, to a zirconocene complex Cp₂ZrMe₂.²

This Grignard method was applied to the synthesis of similar types of complexes $[\{(\eta^5-C_5H_3)_2(SiMe_2)_2\}ZrEt]_2-(CH_2CH_2)$ by Royo et al.³ and (Cp₂ZrEt)₂(CH₂CH₂) by Fischer, Walther, and co-workers.⁴ The structures of all these complexes have been confirmed by X-ray analysis. This Grignard method we developed has synthetical limitations inasmuch as it can introduce only an Et group or a Me group as Y in $(Cp_2ZrY)_2(CH_2CH_2)$. Therefore, we investigated the development of a general method for the synthesis of a series of (Cp₂ZrY)₂(CH₂CH₂) where Y is an anionic ligand. In this paper we would like to report a new coupling method of two zirconocene complexes Cp₂ZrEt₂ and Cp_2ZrX_2 (X = Cl or Br) for the formation of bimetallic halide derivatives, $(Cp_2ZrX)_2(CH_2CH_2)$ (X = Cl or Br) which can be conveniently converted into a series of ethylene-bridged bimetallic zirconocene complexes (Cp2ZrY)2(CH2CH2) by reaction with anions Y-.

$$Cp_{2}ZrEt_{2} \xrightarrow{Cp_{2}ZrX_{2}} Cp_{2}ZrCp_{2} \qquad (2)$$

$$X = Cl \text{ or Br}$$

As shown in eq (2), when Cp₂ZrEt₂ was treated with one equiv of Cp₂ZrCl₂, an ethylene-bridged bimetallic complex (Cp₂ZrCl)₂(CH₂CH₂) (2a) was obtained as a yellow solid in high yield. A typical procedure is as follows. To a THF solution of Cp₂ZrEt₂ was added one equiv of Cp₂ZrCl₂ at -20 °C. The mixture was warmed up to room temperature to give yellow precipitates in 91% isolated yield. Its ¹H NMR spectrum showed characteristic bridged-ethylene protons at -0.45 ppm as a singlet and Cp protons at 5.62 ppm. In its ¹³C NMR spectrum, two signals appeared at 11.68 ppm and 106.65 ppm assignable to ethylene carbons and Cp carbons, respectively. These NMR spectra were characteristic of the ethylene-bridged bimetallic zirconocene complexes.⁵

An analogous complex, $(Cp_2ZrBr)_2(CH_2CH_2)$ (**2b**) was obtained in 76% isolated yield as orange crystals when Cp_2ZrBr_2 was used instead of Cp_2ZrCl_2 . Its 1H and ^{13}C NMR spectra were almost the same as that of **2a**. 6 The structure of **2b** was determined by X-ray crystallography as shown in Figure 1. 7 The C–C bond length of ethylene was 1.48 Å in **2b**. This number is almost comparable to those in other bimetallic zirconocene-ethylene complexes such as $(Cp_2ZrMe)_2(CH_2CH_2)$ (**1**) $(1.47 \text{ Å}),^2$ $(Cp_2ZrEt)_2(CH_2CH_2)$ (1.50 Å) 4 and $[\{(\eta^5-C_5H_3)_2(SiMe_2)_2\}-ZrEt]_2(CH_2CH_2)$ (1.48 Å) 3 and is relatively shorter than that in $(Cp_2ZrClAlEt_3)_2(CH_2CH_2)$ (1.55 Å). 1 Compared with a monometallic zirconocene(II)-ethylene complex the C–C bond length of the ethylene in **2b** is almost the same as that in $Cp_2Zr(CH_2CH_2)(PMe_3)$ (1.49 Å). 8

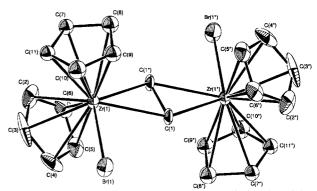


Figure 1. Structure of $(Cp_2ZrBr)_2(CH_2CH_2)$ (2b). Selected bond distances (Å) and bond angles (deg): Zr(1)-C(1), 2.516(6); Zr(1)-C(1*), 2.331(6); Zr(1)-Br(1), 2.7123(9); C(1)-C(1*), 1.48(1); Zr(1)-C(1)-C(1*), 65.5(4); Zr(1)-C(1*)-C(1), 79.1(4); C(1)-Zr(1)-C(1*), 35.4(3); C(1)-Zr(1)-Br(1), 81.0(1).

We have reported that Cp_2ZrEt_2 can be cleanly converted into a zirconocene-ethylene complex in situ at room temperature. Therefore, we tried the reaction of zirconocene-ethylene phos-

Chemistry Letters 2001 357

$$Cp_{2}Zr - \begin{vmatrix} Cp_{2}ZrCl_{2} & Cp_{2}ZrCp_{2} & Cp_{2}Zr$$

phine complexes, Cp₂Zr(CH₂=CH₂)(PBu₃) or Cp₂Zr(CH₂=CH₂)-(PPh₂Me)⁹ with Cp₂ZrCl₂. As expected, bimetallic complex **2a** was formed in 47% and 44%, respectively, as shown in eq (3).

This result clearly showed that bimetallic zirconocene-ethylene complexes were formed by the coupling reaction of the zirconocene-ethylene complex, $Cp_2Zr(CH_2=CH_2)$, with Cp_2ZrCl_2 . The reaction mechanism for the formation of **2** from the monometallic zirconocene-ethylene complex **3** is not elucidated yet, but the following mechanism can explain the formation of **2a** (Scheme 1). Initially, a zirconocene-ethylene complex **3** is generated from Cp_2ZrEt_2 , and Cp_2ZrCl_2 interacts with **3** to form an intermediate (**5**). One of the ethylene carbons coordinates to the zirconium metal of Cp_2ZrCl_2 while Cl in Cp_2ZrCl_2 simultaneously coordinates to the other Cl in Cl i

Scheme 1.

$$Cp_{2}ZrEt_{2} \longrightarrow \begin{bmatrix} Cp_{2}Zr - | & \equiv & Cp_{2}Zr \end{bmatrix} \xrightarrow{Cp_{2}ZrCl_{2}}$$

$$Cp_{2}Zr \longrightarrow Cp_{2}Zr \longrightarrow Cp_{2}$$

Scheme 2.

Me Ph Cp₂Zr ZrCp₂
$$ZrCp_2$$
 $ZrCp_2$ $ZrCp_2$

The bimetallic complexes 2a and 2b can be converted into various analogous complexes by reaction with nucleophiles such as lithium reagents. Representative procedure is as follows. To a suspension of 2a was added two equiv of PhLi at -78°C and wamed up to room temperature. After stirring it for 1h, $(Cp_2ZrPh)_2(CH_2CH_2)$ (7) was afforded as yellow precipitates. Results are summarized in Scheme 2. When 2a was treated with MeLi, (Cp₂ZrMe)₂(CH₂CH₂) (1) was obtained in 36% yield. The reaction with n-BuLi, and Me₃SiCH₂Li $(Cp_2ZrBu)_2(CH_2CH_2)$ (6), and $(Cp_2ZrCH_2SiMe_3)_2(CH_2CH_2)$ (8) in high yields, respectively. ^{10–12} These bimetallic complexes **1**, **2** and 6-8 have relatively poor solubility in organic solvents. The reaction of 2b with lithium reagents gave rather lower yields of products. When the first nucleophile reacts with 2a or 2b, monosubstituted intermediates (Cp₂ZrR)(Cp₂ZrX)(CH₂CH₂) are formed. The stability of these intermedates might depend on the halogen ligand X.

Further investigation on the coupling reaction of two different zirconocene complexes for the formation of bimetallic zirconocene complexes is now in progress.

References and Notes

- W. Kaminsky, J. Kopf, H. Sinn, and H.-J. Vollwer, *Angew. Chem., Int. Ed. Engl.*, **15**, 629 (1976).
- a) T. Takahashi, K. Kasai, K. Nakajima, and N. Suzuki, the 43rd Symposium on Coordination Chemistry of Japan, Sendai, September 1993, Abstr., No. 2B01. b) T. Takahashi, K. Kasai, N. Suzuki, K. Nakajima, and E. Negishi, *Organometallics*, 13, 3413 (1994).
- 3 F. J. Fernandez, P. Gomez-Sal, A. Manzanero, P. Royo, H. Jacobsen, and H. Berke, *Organometallics*, 16, 1553 (1997).
- 4 R. Fischer, D. Walther, P. Gebhardt, and H. Gorls, *Organometallics*, **19**, 2532 (2000).
- 5 Compound data for **2a**: Isolated as a yellow solid (91%). 1 H NMR ($C_{6}D_{6}$ -THF, $Me_{4}Si$) δ -0.45 (s, 4H), 5.62 (s, 20H); 13 C NMR ($C_{6}D_{6}$ -THF, $Me_{4}Si$) δ 11.68, 106.65. Anal. Calcd for $C_{22}H_{24}Cl_{2}Zr_{2}$: C, 48.77; H, 4.47; Cl, 13.09%. Found: C, 49.19; H, 4.76; Cl, 12.63%.
- 6 Compound data for 2b: Isolated as orange crystals (76%). ¹H NMR (C₆D₆-THF, Me₄Si) δ -0.44 (s, 4H), 5.61 (s, 20H); ¹³C NMR (C₆D₆-THF, Me₄Si) δ 11.68, 106.65. Anal. Calcd for C₂₂H₂₄Br₂Zr₂: C, 41.90; H, 3.84; Br, 25.34%. Found: C, 42.69; H, 4.06; Br, 24.38%.
- 7 Crystal data for **2b**: $C_{22}H_{24}Br_2Zr_2$, MW = 630.69, monoclinic, space group $P2_1/n$, a = 11.0744(7) Å, b = 8.0860(5) Å, c = 13.2223(8) Å, $\beta = 113.397(1)^\circ$, V = 1086.7(1) Å³, Z = 2, $d_{calcd} = 1.927$ g/cm³, R = 0.049, $R_w = 0.077$ for 1899 reflections ($I > 2\sigma(I)$). A cyclopentadienyl ring was found to be disordered, and this was resolved into two half-occupancy orientations (C(7)–C(11) and C(12)–C(16)). C(12)–C(16) atoms were omitted for clarity in Figure 1.
- H. G. Alt, C. E. Denner, U. Thewalt, and M. D. Raush, J. Organomet. Chem., 356, C83 (1988).
- T. Takahashi, M. Murakami, M. Kunishige, M. Saburi, Y. Uchida, K. Kozawa, T. Uchida, D. R. Swanson, and E. Negishi, *Chem. Lett.*, 1989, 761.
- 10 Compound data for **6**: Isolated as yellow solid (24%). NMR yield 84%. Characteristic NMR signals are as follows. ^{1}H NMR (C₆D₆–THF, Me₄Si) δ –0.44 (s, 4H) (for ethylene), 5.62 (s, 20H) (for *Cp*). ^{13}C NMR (C₆D₆–THF, Me₄Si) δ 106.67 (for *Cp*).
- 11 Compound data for **7**: Isolated as yellow solid (60%). NMR yield 90%. ¹H NMR ($\rm C_6D_6$ –THF, Me₄Si) δ 0.18 (s, 4H), 5.76 (s, 20H), 6.92–7.42 (m, 10H). ¹³C NMR ($\rm C_6D_6$ –THF, Me₄Si) δ 12.99, 107.42, 123.34, 126.92, 136.27, 141.87.
- 12 Compound data for **8**: Isolated as yellow solid (57%). NMR yield 87%. ^1H NMR ($\text{C}_6\text{D}_6\text{-THF}$, Me₄Si) δ –0.36 (s, 4H), –0.28 (s, 4H), 0.32 (s, 18H), 5.50 (s, 20H); ^{13}C NMR ($\text{C}_6\text{D}_6\text{-THF}$, Me₄Si) δ 4.82, 15.23, 17.69, 106.93.